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We construct a class of adaptive networks whose purpose is to function in a volitile environment. The
characteristic structure is a sparsely connected network with a low-activity internal control mechanism
that functionally keeps the network adaptive and with a local-activity-dependent synaptic response to re-
warded and penalized actions. The resulting dynamics, called adaptive performance, adjusts easily to
changes in parameters induced by input or feedback, and it shows fluctuations over a wide range of time
scales. Our specific studies concern conditioning and control. We speculate that adaptive performance
may be an underlying mechanism in brain function, as well as provide a basis for new technology.

PACS number(s): 87.22.As, 87.22.Jb, 89.80.+h

One of the most long-sought goals in neuroscience is to
understand the mechanisms that enable the brain to un-
dertake a diversity of tasks [1]. On the neural level, the
underlying network dynamics is not task specific, and any
realistic attempts to explain the network’s ability of func-
tion must take this into account [2].

In this paper we introduce and analyze adaptive net-
works that by construction are versatile. We shall see
that the network performance is intimately connected
with an adaptive nature that allows information to flow
through a variety of ever-changing paths. We call this
adaptive performance to emphasize the conceptual
differences from adapted performance, where an
(artificial) neural network in a ‘learning mode” is adapt-
ed to a given task [3]. In this process the weights (corre-
sponding to the synaptic efficacies) are set. The weights
are then used in an “‘associative memory mode” in which
only the state vector is changed. Conceptually, training
and performance are separated as two different “modes.”
The usual argument for this separation in modeling brain
functions is that the synaptic efficacies in general change
only slightly on the basic time scale for the neural dy-
namics, i.e., the firing time. One might therefore naively
expect that the dynamics for the synaptic efficacies can be
separated from the dynamics for the neurons. This is not
true: Even small changes in synaptic efficacies may
change the activity substantially. Such highly adjustable
states we find in turn to be an inevitable result of versatile
goal-directed behavior. Thus, in our picture of adaptive
networks the neural state n and the synaptic efficacies J;;
are necessarily interwoven dynamical variables.

A fundamental result that brings the above view into
further perspective is the wide range of time scales that
are observed in the brain, e.g., in EEG ‘“brain wave”
recordings of collective neural activity [1,4]. Spectra ob-
tained from these recordings can often be broad with a
long tail that resembles 1/f noise. This intriguing obser-
vation unveils an important characteristic of brain func-
tion, namely, a wide distribution of temporal fluctuations.
Thus, one cannot divide brain function into a given num-
ber of distinct processes taking place on different time
scales. The variety of time scales is a result of the dy-
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namics itself. In addition, the spectra may show peaks
(e, B, v, 8, and 6 waves) associated with specific types
of brain activity. Below, we show numerically that adap-
tive performance gives rise to an adaptive complex dy-
namics with similar wide distributions of time scales.

In terms of brain function, we stress from the begin-
ning that our goal is not to explain “intelligent” behavior
from a microscopic description of the electrochemical
processes important on the neuronal level. Our purpose
is here to point out mechanisms that, we believe, underlie
the cooperative neuronal activity, and, most importantly,
to show that these mechanisms result in successful
behavior in a changeable environment. We find that the
sufficient and necessary ingredient is a sparsely connected
network with a low-activity internal control mechanism
that functionally keeps the network adaptive, and with a
locally activity-dependent synaptic response to rewarded
and penalized actions.

To be concrete, consider a network with the architec-
ture depicted in Fig. 1. Periodic boundary conditions are
assumed for the layers. To avoid the firing pattern
becoming dominated by loops of firing neurons, and for
computional simplicity, a feed-forward network is chosen
with input at the first row and output at the bottom row.
The network units are McCulloch-Pitts [5] “neurons”
that can be in only two states, firing (r =1) or not firing
(n =0) [6]. For biological implementation sparseness is
required. By sparseness we mean that the number of
synaptic junctions from one neuron is extremely small
compared to the number of neurons. Here, spareness is
introduced by assuming that each neuron has only three
incoming and three outgoing “synaptic junctions” [Fig.
1(b)]. The number of neurons and/or synapses may be
chosen to be larger. In the human brain, there are bil-
lions of neurons, and each neuron is associated with
thousands of synaptic junctions, giving the brain faster
performance and the ability to solve more complex prob-
lems.

The input h; (postsynaptic potential) received by the
ith neuron is the linear sum of the synaptic efficacies J;;
(from the jth neurons to th ith neuron) of those connec-
tions that were activated,
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hi=2Ji-nj . (1a)

J

If this input exceeds a threshold field T (here taken to be
homogeneous), then the ith neuron fires,

n,—n/=0Mh,~T) . (1b)

The modification of a synapse, i.e., the change in
efficacy, called reinforcement, is allowed to depend only
locally on the coherence in activity. The goal of rein-
forcement is to strengthen firing paths that lead to a posi-
tive feedback (synaptic facilitation), and weaken the paths
resulting in a negative feedback (synaptic depression). In
our simple network, this is done using the following rein-
forcement rule [7]:

Jy—d =T, / I (2)
i
where
Ti=J;+fJ;min; , (2b)

and where the reinforcement function f(J) has the logis-
tic form

fH=r(1—-J)+7n, (2¢)

with |r| <<1. This specific form of the reinforcement
function seems unimportant [J(1—J) may be replaced by
other positive functions with saturation points (here O
and 1)]. In our “minimal” model, all neurons are taken
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FIG. 1. (a) Schematic diagram of an adaptive network in an
environment. (b) Illustration of incoming and outgoing junc-
tions.
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to be “excitatory” [8], 0<J;<1. Possible noise is
represented by the term 7, chosen randomly in space and
time from a uniform distribution of values between —7,
and +1, From an energetic point of view, noise is often
helpful for finding relevant paths through the network.

The (global) “reaction” field r is associated with a feed-
back from the environment. Again, we cannot allow this
feedback to be task specific without loosing versatility —
error back propagation or similar instructive mecha-
nisms applied to speed up training in artificial neutral
networks are thus precluded. To be acceptable, the feed-
back must be only evaluative. We here consider the sim-
plest case of a yes or no (right or wrong) signal [9], and r
assumes only two values,

r(yes)=r, >0, r(no)=r_<0. 3)

An additional element crucial to the above type of net-
work is an internal control mechanism for the activity,
i.e.,, the number of firing neurons. We find that it is
essential for the performance that this number is kept
small [10]. In the brain, the interplay between excitatory
and inhibitory neurons is partly responsible for such a
control, but restrictions on the transport of chemicals
probably play an important role too. Here, we imple-
ment the internal control on the threshold field 7. Alter-
natively, one an implement the control on the synaptic
efficacies. The total activity 4 =3;ccn; from a region
C, taken to be the output region, is detected. If this
exceeds the value A, the threshold T is slightly in-
creased, while T is lowered if 4 < A4,

TT'=T+8sgn(4—A4,), @)

where 0<8 <<1, and sgn(0)=0. A4, must be small com-
pared to A, =|C|. Here we use A4,=1, and
8=0.01/N, where N is the number of layers.

Threshold control has also been used to regulate activi-
ty in more traditional neural network studies [11]. How-
ever, in these studies the threshold control is (as well as
other rules) implemented to “tune” the network towards
selected activity patterns, and the search for rules are
motivated by a desire for more efficient learning and re-
call. This requirement naturally leads to different rules
for the learning mode and the associative memory mode
[11]. In the conceptually different one-mode network
presented here, “most efficient” is ill-defined as no tasks
are given a priori. The rules must be task independent.
In choosing these rules, the demand for versatility and
capability replaces the demand for speed and efficiency.

Our adaptive dynamics is applied to two tasks: A, con-
ditioning, where a certain active behavior is rewarded,
and B, control, where the task is to track a moving target.
The motion is here restricted to be on a line. Under 4
we show that conditioning leads to learning through an
adaptive process with temporal fluctuations that resemble
1/f noise. Task B is chosen to clearly demonstrate the
difference between adaptive and adapted performance.
While task 4 is a basic test for applications involving
classification and analysis; task B is a paradigm for con-
trol systems and robot kinematics. In order to show a
performance that is solely a result of the networks adap-
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FIG. 2. (a) Performance P(t)
(averaged over the interval
[max(0,¢ —1000);2]), and
threshold T'(¢) for task 4. Inset:
Sample of temporal fluctuations
in the reaction field » and thresh-
old T(t). (b) The activity
prerecorded over 1000 time
steps is concentrated within a re-
gion that slowly narrows down
to a single path. (c) Power spec-
trum S (f) for the fluctuating re-
action field. Inset: Distribution
D(7) of time intervals over
which r is constant (9198 inter-
vals total, log to the base 10).
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tive nature, the input for both tasks is taken to be a single
neuron that fires constantly. The initial condition is al-
ways taken as a random uniformly distributed set of J;;’s
(0<J; <1 ), and for all neurons, n; =0 (except for the in-
put).

Task A: A 64X 64 lattice is used, and at every time step
activation of an output neuron is associated with a cer-
tain action (out of 64). Behavior is the combination of ac-
tions, and is considered active if at least one action is per-
formed. One of the actions (randomly selected) is con-
sidered desirable. The behavior is instantaneously re-
warded if it includes the desired action. The feedback is
taken to be positive (r=r_ =0.01) if the behavior is re-

warded, or if no actions are performed at all. Otherwise,
the feedback is negative (r=r_=—0.1). Noise is
neglected, i.e., 7,=0. We define the performance P as the
fraction of active behaviors that were rewarded. Figure
2(a) shows an example of how the performance P and the
threshold T change with time. A threshold variation is
observed that is bounded between T, =~1 and T',, ~1.
The performance P is found to rise quickly from O to
about 0.8, around which value P fluctuates until it
reaches unity.

In our approach, performance is taking place on the
neural time scale (ms). From the point of neuroscience,
we do not act and react on the neural time scale. Our
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neural dynamics may be extended, taking into account
that the feedback from the external environment gives
rise to a reinforcement signal on a time scale much longer
than the neutral time scale considered here. Such an ex-
tension can reduce the number of the behavioral
responses that are needed.

When the network performs perfectly, the activity is
concentrated along a single path connecting the input site
with the output site associated with the desired action.
Through the preceding process the average activity is
slowly narrowed down, as shown in Fig. 2(b). The ob-
served behavior pattern is, however, very complex.
Shown in the inset of Fig. 2(a) is a sample of the temporal
fluctuations in the reaction field » and threshold 7. From
the signals it is clear that many time scales are represent-
ed. The power spectrum [12] S(f) for the fluctuating re-
action field is shown in Fig. 2(c). It displays a 1/f power
law over a wide range of time scales,

S(H~f"%, (5a)

with a=1.1. In addition, we have, on the basis of five in-
dependent runs, determined the distribution D (7) of time
intervals 7 over which 7 is constant (r=r_ or r=r_) [in-
set of Fig. 2(c)]. The distribution is approximated by a
power law,

D(r)~778 (5b)

with B=~1.2. The results suggest that adaptive perfor-
mance in the process of learning leads to behavioral
changes on a great variety of time scales.

Task B: A 16X 16 lattice is used, and activation of the
ith output site results in motion of the tracking point by a
distance d;. The values of d; are chosen to be within a
range —d <d; <d of sufficient size, randomly distributed
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along the output line. Whenever there is a firing at the
output line, the tracking point is move accordingly. If
more than one fires the average of the corresponding dis-
tances is chosen. In case of no motion (no output firing),
or when motion brings the tracking point closer to the
target, the feedback is positive (r =7, ); when the track-
ing point is moved further away from the target, the feed-
back is negative (r=r_). Two cases are considered: (a)
The target moves with a constant speed; (b) the target os-
cillates. In case (a), no noise is present (17,=0); in case
(b), noise is present (17,=0.05). The results are shown in
Fig. 3. It is seen that the target is found and followed.

A closer inspection [insets of Figs. 3(a) and 3(b)] shows
that the network dynamics again is complex. Adaptive
performance gives rise to motion fluctuations on all time
scale [Fig. 3(c)]. However, peaks may now be presented
in the power spectrum [13] S(f) and in the distribution
D(7), indicating that some time scales are selected for the
performing process. In case (a), we find two peaks in
D(7), a narrow peak at 7;=15, and a broad peak around
7,=80. A separation of the distribution D(7) into two
distributions D _(7) and D, (7) associated with r=r_
and r=r_ shows that 7, is related to the negative feed-
back, while 7, is related to the positive feedback. The re-
sult suggests that peaks may arise when learning has tak-
en place. We emphasize, however, that the activity is not
restricted to a few output sites. On the contrary, the ac-
tivity keeps fluctuating over all output sites. In case (b),
no peaks are present, may be as a result of noise. The
spectrum and time distribution are approximated by the
power laws (5a) and (5b) with ¢=~1.5 and B~1.4.

The conditioning test (Skinner box) and the one-
dimensional control problem presented by tasks 4 and B
are the most simple representatives of their kind. Fur-
ther complications may be added: Pavlov’s dog tests,
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recognition tasks, inverted pendulum problems, higher-
dimensional control problems, etc. The challenges seem
endless in number.

The need for adaptive networks of the type introduced
above seems particularly clear where the external
response possibilities are not known or cannot be defined
at a sufficient level, or where the goals progressively
change. In the real world in which we function, this is
the rule. In industry it is often the case, which suggests
adaptive performance as a basis for new technology. Un-
like many other artificial neural networks, the networks
introduced here do not need a supplementary agent, com-
puting by standard means how to set the synaptic
weights. Adaptive networks locally and dynamically set
the weights themselves, according to the tasks selected by
the user. Furthermore, the networks have by construc-
tion a black-box design, which means that they are inter-
face independent —essentially, no manual is needed.

In conclusion, we believe that the concept of adaptive
performance may be underlying mechanism in brain
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functions, as well as provide a basis for new technology.
To this end, we have introduced a class of versatile adap-
tive networks whose main purpose is to function in a
volatile environment. The essential ingredient is a sparse-
ly connected network with an internal control mecha-
nism for the activity, and with a local-coherence-
dependent synaptic response to rewarded and penalized
actions. On this basis, we find a behavior pattern with
temporal fluctuations over a wide range of time scales, in-
dicating that the neural network functionally is highly
adaptive to environmental changes. We have shown that
the resulting power spectra resembles 1/f noise, in some
cases with peaks associated with certain types of activity.
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